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On the energy shape dependences of ellipsoidal 
leptodermous systems 
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Institut de Physique, 2, rue de la Houssinibre, 44072 Nantes Cedex, France 

Received 23 February 1981, in final form 11 May 1981 

Abstract. We study the shape-dependent functions that determine the energy of charge (or 
mass) ellipsoidal distributions. Investigating the symmetries of the ellipsoid-invariance 
against axis relabelling and transformation to its reciprocal-we show (i) that the mean 
curvature of an ellipsoid is strongly connected to the area of its reciprocal and (ii) that the 
energy can be deduced analytically from only one angular moment. 

1. Introduction 

Among the equilibrium figures that can be attained by a distribution of matter or charge 
held together by a surface tension, the ellipsoidal shapes occur frequently. 

As early as 1834 Jacobi concluded ‘that ellipsoids with three unequal axes can very 
well be figures of equilibrium’. Such ellipsoidal figures of equilibrium may be induced, 
at least approximately, either by rotation (planets, ellipsoidal galaxies, classical rotating 
liquid drops and nuclei with high angular momenta) or by the self-consistent field of an 
N-body system (nuclei with low spins). The ellipsoidal shapes-viewed as small 
deformations from the spherical o?es-are interesting, because one can use the 
considerable historical studies on the ellipsoid properties, a review of which can be 
found in Chandrasekhar (1969). Furthermore, in nuclear physics, the dynamical 
studies of the nuclear deformation require that we do not restrict ourselves to axial 
symmetries (Kumar 1975). 

Many physical distributions of matter or charge can be considered as leptodermous 
(thin skin) systems; in that case, the localisation of the major modifications of the 
energy, caused by the surface, on a relatively thin surface region, allows analytical 
developments of the energy expression. The most sophisticated analysis of this kind has 
been performed for the macroscopic binding energy of the nuclei, in the droplet model 
(Myers and Swiatecki 1970,1974). This model takes account of the difference between 
the two density profiles of the neutrons and protons. Then, the total energy (volume 
energy, surface energy and Coulomb energy) for the actual nucleus with a diffuse 
surface is obtained from six shape-dependent functions: B,, Bk, B,, B,, B, and B,, which 
are the surface function, the surface curvature function, the Coulomb and Coulomb 
redistribution functions and surface Coulomb functions (see table 1); these B functions 
being evaluated for an object with an equivalent sharp surface. 

For an ellipsoid two of these functions are well known: the surface-older than one 
hundred years-and the Coulomb energy (see Kellog 1929). Carlson (1961) has 
introduced the effects of the anisotropy in the distribution of charges,in this last energy. 
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Table 1. Shape dependences for arbitrary shapes (Myers and Swiatecki 1974). The B 
factors are dimensionless quantities that reduce to unity for spherical shapes. We take a unit 
radius for the sphere of equal volume: k ,  is the mean local curvature of the surface, defined 
in terms of the principal radii of curvature RI  and Rz,  k1 = R;' +R;'. 

Most of the shape-dependent functions usualiy found in the literature appear as limited 
developments of the deformation parameters. A comprehensive review of these 
formulae, not restricted to ellipsoidal shapes, will be found in Hasse (1971). 

In our present work, as usual in electromagnetism or in probability theory, these 
functions are expressed in terms of the moments of the distribution. Our purpose is to 
show that the full use of the ellipsoidal symmetries and the reciprocal ellipsoid leads to 
very simple algebraic expressions for the shape-dependent factors. Then we will show 
that the total energy of a leptodermous ellipsoidal system is completely fixed by only 
one of these moments. We emphasise that most of our results are already known for the 
spheroidal shapes; our contribution aims at unifying the derivation of these results and 
extending them to asymmetrical shapes. 

The ellipsoidal shape parametrisations are presented in § 2.  The uses of the 
symmetries are described in 8 3, which is devoted to the linear transformations of the 
elliptic integrals, and in § 4 where the reciprocal ellipsoid is defined. The deformations 
from the spherical shape have two main origins. The first is the finite size of the system 
that gives the surface and curvature energies. They are investigated in § 5 .  The second 
part of the deformation has a Coulomb origin and may include corrections due to the 
inhomogeneities of the charge distribution. This is the subject of 8 7,  the angular, 
surface and volume moments of the system being previously defined and calculated in 
8 6 ,  using the symmetry properties. Finally, the evolution of the various shape- 
dependent functions is displayed for triaxial ellipsoidal shapes (one eccentricity being 
fixed). 

2. Parametrisations of the ellipsoid 

When the principal axes of an ellipsoid are coincident with the Cartesian coordinate 
axes, the equation of its surface is given by 

3 

i = l  
1 (Xi/ui)2= 1 

The ai coefficients are the semi-axis lengths, and without loss of generality we can 
assume 

a l  ~ a ~ a  u3. (2) 
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The volume enclosed by the ellipsoidal surface is 

v = (4Ir/3)a1aza3. 

If we start from a sphere with unit radius, the volume conservation implies 

a1a2a3 = 1. (3) 

The well fitted parametrisation for ellipsoidal shapes consists of the two squared 
eccentricities E :  and E :  (as defined below) that allow a complete description of all the 
shapes in a finite triangular Cartesian plot 0 < E :  < 1 and E :  < E : .  These three eccen- 
tricities are 

E :  = ~ - ( U ~ / U I ) ~ ,  (4) 

E :  = 1 - (a2/a1)2, ( 5 )  

(6) 2 2 
E 3  = 1-(a3/a2) 

The conditions (2) and (3) for the semi-axis lengths lay down the equivalent ones for the 
eccentricities: 

E 1  2 E29 E 1  €3, with (1 - E : )  = (1 - ~ : ) ( l  - E : )  

where the eccentricities are real positive numbers, smaller than unity. 
We shall write 

sin 4 = E ~ ,  k = ~ 2 / ~ 1 ,  k'= E ~ / E I .  (7) 

As is well known, most of the ellipsoidal geometrical properties can be expressed in 
terms of the incomplete elliptic integrals: 

where 

A(a ,  k) = (1 - k 2  sin2 (10) 

When the ellipsoid has an axis of revolution, the different parameters take the following 
values. In the prolate case 

a1 3 a2 = a3, E 3  = 0,  E 1  = E 2 ,  k = 1, k' = 0. 

In the oblate case 

a1 = a2 2 a3, E 2  = 0 ,  E 1  = E 3 ,  k = 0 ,  k' = 1. 

In both cases, the incomplete elliptic integrals reduce to elementary functions. Another 
parametrisation will be very useful to determine the area and the mean local curvature 
of the ellipsoid: 

x1 = al sin v cos U ,  (11) 

with 0 s  v s-7~ and O <  U <21r. 

x 2  = a2 sin v sin U ,  x3 = a3 cos U, 
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3. Ellipsoidal symmetries and linear transformations 

The algebraic description of the physical properties induces scalar expressions 
(f(xl, x 2 ,  x 3 ) )  where the brackets stand for surface, angular or volume integrations (see 
for example, Chandrasekhar (1969), Rosenkilde (1967)). Each ellipsoid is defined 
unambiguously by the set of the semi-axis lengths, so that these expressions are 
uniquely functions of the three parameters al ,  a2, a3: 

Wl, x2, x3)) = Wa1, a2, a3). 

The ai dependency of these 9 functions is often written in terms of the incomplete 
elliptic integrals: E(+, k ) ,  F(+, k ) ,  E($, k’)  and F($,  k ’ ) ,  the arguments of which, 
($, k,  k’), are bound to the eccentricities as defined in equation (7). 

Due to the symmetries of the ellipsoid, the physical properties of an ellipsoidal 
distribution of matter are invariant under a relabelling of the coordinate axes. When we 
know an analytic formula for a given expression ( f ( x 1 ,  x 2 ,  x 3 ) ) ,  this invariance enables 
us to write down all of a family of new expressions by interchanging the axis indices. The 
only difficulty is to know the effect of the axis relabelling on the incomplete elliptic 
integrals in the 9 expressions. Fortunately, these geometrical symmetries are connec- 
ted with the linear transformations of the incomplete elliptic integrals. 

In table 2 the linear transformations (Erdelyi et al 1953) are recalled. They give a 
set of elliptic arguments (JI, k )  so that any elliptic integrals having two of these 
arguments are connected by rational relations. Table 3 gives a geometric inter- 
pretation, showing the linear transformation that is induced by each relabelling of the 
axes for the two pairs of elliptic integrals E(+, k), F(+, k )  and E(+, k ’ ) ,  F($,  k ’ ) .  

4. The reciprocal ellipsoid 

The equilibrium properties of ellipsoidal systems are very sensitive to the energy 
difference between prolate and oblate shapes at constant mean deformation. Thus we 

Table 2. Linear transformations. F = F ( # ,  k) ,  E = E(#,  k )  and AEA($ ,  k )  are defined by 
equations (9) ,  (10) and (11). The dotted variables are the transformed ones. 

Transformation 
number sin $ 

k sir. # k-’ k F  
-i tan # (1 - k2)l/’ - iF  
- i ( l -  k2)”2 tan # (1 - k2)-’/2 - i ( l -  k2)’ j2F 

-i k A-’ sin # - j ,L-l ( l  - k2)’/* - ikF 
(1 - k2)”2 A-’ sin # ik(1 - k 2 ) - ’ / 2  (1 - k2)’/’F 

Transformation 
number E(& k )  

k-’[E-(1- k2)F]  
i (E-F- tan  (/I A) 
i(l-k2)-’’2[E-(1-k2)F-A tan$)  
(1 - k’)-’’’(E- k2  A-lsin $ cos $) 
ik-’(E-F-k2A-’sin#cosi+b) 
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Table 3. Ellipsoid symmetries and induced linear transformations. 

define a transformation (cf figure 1) that conserves both the volume, and the coordinate 
lines (in the (U, U )  parametrisation, see equation (ll)), and transforms an oblate 
ellipsoid into a prolate one. If the point M ( x l ,  x2, xg)  describes the ellipsoid surface (l), 
its transform M'(x; ,  x ; ,  x i ) ,  defined by 

generates the surface of the reciprocal ellipsoid, the equation of which is 

x ; 2 / ( a ; ' ) 2  = 1 
i 

The distance p of the centre of the ellipsoid from the tangent plane, at the point M, is 

while the unit outward normal n has components 

(13) 2 ni = x i p / a i  

I x 3  

Figure 1. Illustration of the inversion leading to the reciprocal ellipsoid. The oblate 
ellipsoid E2 of semi-axis lengths U ; ' ,  a i ' ,  a;' is the reciprocal of the prolate one El. The 
two ellipsoids have the same axis of revolution ( x 2  axis on the figure). M' and H '  are 
respectively the inverses of H and M. We notice that two reciprocal points A42 and M2 have 
the same coordinates (U, U )  (see equation (11)); here U =&. 
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so that 

OM' = n / p .  

This transformation is clearly involutive. 

With the condition (3) the quantity 

becomes the essential invariant of this transformation. At the point M,the elementary 
solid angle and the surface element are given by 

dw = C/r3 and d u  = C/p  

while at M '  

dw' = p3C and d a '  = rC. 

In reference to the parametrisation defined by (4), (9, and (6) and the linear trans- 
formations of the elliptic integrals, we must order the semi-axes: 

so that 
a? sa, *  s a 3  * 

as in equation (2). Henceforth we shall use an asterisk to distinguish the expressions for 
the reciprocal ellipsoid (with the convention (17)) from those of the direct one. 
Naturally, one has still 

r* = l / p  and p" = l / r .  

The transformations (16) affect the eccentricities: 

6 :  = & I ,  6 ;  = 6 3 ,  6 ;  = E 2 .  

Furthermore 

k'* = k and k* = k'. 

Each expression for a given ellipsoid generates another one for the reciprocal one 
through this transformation, and 

and the same for E($, k). 
The reciprocal transformation will allow us to determine the surface moments of the 

ellipsoid (see § 6 )  as a function of the angular moments of the reciprocal ellipsoid. We 
shall see too, that the Coulomb properties of an ellipsoid are connected to the surface 
ones of the reciprocal ellipsoid (see § 7.2). 

The most beautiful example is the connection between surface and mean curvature 
of the ellipsoid (see next section). 
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5. Surface and curvature functions 

For a given i, all the points on the surface keeping ni constant satisfy the equations ( 1 )  
and (13).  Their projection on the (x j ,  xk) coordinate plane is an ellipse: 

(xj/”j)2 f (Xk/a&)’ = 1 

with 

a i”(n i )=a i z ( l -n : ) [ l - ( l -a? /a : )n : ] .  

The aj  are the semi-axis lengths of the ellipse, the area of which is 

S ( n i )  = m j ( n i ) a k ( n i ) .  

We define three quantities Ai ( i  = 1 , 2 ,  and 3 )  

Ai = ( 4 ~ ) - l  JJ n: d v  = ( n i  2 )m. 

Then the area A of the ellipsoid is given by 

A =47~(Ai+Az+A3). 

Due to the symmetries of the ellipsoid (cf 5 3) ,  we can restrict our attention to the 
particular case i = 3,  j = 1 and k = 2,  and 

The reduction of the A3 expression in terms of incomplete elliptic integrals is straight- 
forward, With the help of the linear transformations, we obtain the three basic 
expressions 

A1 = ~ 3 [ 2 ~ : ~ : ( l - k ’ ~ ) ] - ~ [ ( 1  -&:)E(+, k‘) 
(23a)  2 1/2 2 1 / 2  

+ ( E :  - E m $ ,  k’ ) -El (1-El )  (1-E3) I, 

where the condition ( 3 )  has been used. 

( 2 3 ~  b, c), 
The analytical expression of the ellipsoidal area is deduced from equations (22)  and 

2 1 / 2  A = ~ T U ~ U ~ [ ( E  ;* - E ~ ) F ( $ ,  k’) + E I E ( $ ,  k‘) + ( 1  - E 1 ) ( 1  - E : ) ” ~ ] ,  

and the surface function B, (see table 1 )  is 

B, = A/41r. 

This result is obviously not new, but its derivation has allowed us to introduce the Ai 
(equation (21) )  that are extensively used in the following. In Cartesian coordinates the 
local mean curvature kl is given by 
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while the local Gauss curvature 1/R1R2 is simply p4 where p is defined by equation 
(12). 

The direct integration of the local mean curvature kl 

K=[[ k l d u  

is not simple using equation (24). The result is more easily obtained by the ( U ,  U )  
parametrisation: 

d u = H d u d v  (25) 
with 

H2 = a;' sin2 v[(l - E : )  - E ?  (1 - E : )  sin2 v + &:(1 - E ? )  sin2 v sin2 U ]  

and 
k , = ( ~ ~ s i n u / H ) ~ a z a 3 ( 2 - & : - E :  s in2v+e2 2 2  sin vsin 2 U). 

Integrating first over U ,  we are left with an expression that can be reduced in terms of the 
incomplete elliptic integrals: 

K =4.rr(a2a3/a1){l + [~~( l -&~)( l -&:) ] -1 '2[ ( l -&:)~(~ ,  k ) + & : E ( $ ,  k)]}. 

The curvature function Bk (see table 1) is 

Bk= K/8r .  

With the help of the identities (18), (19) and (20) one can immediately see that 

K = 2 A *  
and so 

Bk = B$,  

One can notice that this important result is not a local property but just a mean one (see 
equations (14), (15) and (24)). 

6. The ellipsoidal moments 

When we study ellipsoidal distributions of matter, we are primarily interested in the 
calculation of the deviations from the pure, hard-edged, spherical distributions. Such 
properties can be derived in terms of the moments. For example small nuclear 
ellipsoidal deformations are quadrupole deformations. With the aim of studying 
Coulomb (or gravitational) effects either spread in the whole volume, or localised at the 
surface, we are led to define three kind of moments. 

(i) Angular moments, such as 

where w stands for the solid angle. 
(ii) Surface moments: 

( x ; ) ,  = (477-l [I (xi jn  d a  



Energy shape dependences of leptodermous systems 2905 

where dc7 is calculated in § 5 ,  equation (25). The surface and angular moments are 
identical in the limiting case of the unit sphere. 

(iii) Volume moments: 

where d r  is the elementary volume element, and the integration is carried out over the 
whole volume. The coefficients of the three integrals are chosen to give unity for the 
equivalent unit sphere and for n = 0. 

6.1. The angular moments 

In this study, we need only moments of order two (n = 2); they are bound by the simple 
relation 

3 

i = l  
(x:),/a: = 1 

and can be derived from ( r 2 ) ,  that we define by 

We shall use the method of Chandrasekhar (1969) ,  which yields 

( r 2 ) ,  = a2a3&Y1F(4, k ) .  (26 )  

The moments of order two are obtained using 

(x?), = ( r 2 ) ,  -a i  a(r2),/aai. 

By the use of equation (27), and with the derivatives of the incomplete elliptic integrals, 
the three moments of order two are written down. With the help of the linear 
transformations only one moment would be necessary to obtain these results. 

( x : ) ~  = a 2 a 3 / ( ~ ? k ~ ) [ F ( 4 ,  k ) -Ei4 ,  k ) l ,  

= a2a3(1 - k 2 & ? ) / [ & : k 2 ( 1  - k 2 ) ] [ E ( 4 ,  k ) - ( 1 -  k 2 ) F ( 4 ,  k ) - a 3 ~ ~ k ~ / a 2 1 ,  

(xi), = Uzas(1 - E : ) / [ E ? ( ~  - k 2 ) 1 [ a 2 ~ l / w - E ( 4 ,  k)l. 
The angular moments are connected with the potential energy tensors for the ellipsoids, 
which Chandrasekhar (1969) has worked out, and if needed, moments of higher order 
can easily be generated. The basic (x:), angular moments may be developed into 
powers of k for deformations with small triaxiality. We readily find to the order two for 
the prolate shapes ( a l  2 a2 = a3, k + 1 )  
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6.2. The surface moments 

The evaluation of the surface moments implies the introduction of higher (than two) 
order expressions. Fixing our attention again on the following case i = 3, j = 1 and 
k = 2, and introducing cross terms with an aim of completeness, we compute 

(x1x2n3), P ' 2  = (477-l [I x:x;& da .  

We can follow the procedure of the area calculation: 
n 3 = l  

P ' 2  ( x I x z ~ ~ ) ,  = -4 [ n3 d(x?xg)ro 
f l 3 = O  

where (xPx~), is the corresponding moment of the ellipse in the (xl, x2) plane; that is 

with 
a/ 2 

I,, = 4 ( g + q + 2 ) - '  lo sinP 8 cos' 8 d8  

and 

With the use of the ellipsoidal symmetries, we obtain the second-order expressions 

(x?n?), =b:'(A, - A ) / ( a ?  -a? ) ,  i # j .  (31) 

(xTn?>, = a f ~ ,  -(x:nf/a:), -(xhT/aZ),), i # j # k .  (32) 

Using the ellipsoidal surface equation, we deduce the diagonal term: 

Combining equations (31) and (32), the surface moments of second order follow: 

(x3, = (a:/4)(2A, +A, +A),  
(xf), = (a?/lGrr)(A +47~A, ) .  

i # j i t k ,  
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The Ai may be expressed in terms of the angular moments (x?),,,, by the use of an 
important local equality, deduced from equations (14) and (15): 

r*2 dw' = p 2  du. 

As 

we have 

(r*2)w = ( P ~ ) ~  =E a:Ai = I .  
i 

(33) 

I is naturally invariant under axis relabelling. ( r 2 ) ,  is a homogeneous function of 
degree one in a?  (see equation (26)); then I is homogeneous of degree - 1 in a?. 

Euler's theorem gives 

This relation holds whatever the a ,  values are and, comparing with equation (33), we 
can write 

A, = -aI/aa?. (34) 

Combining equations (33) and (34),we obtain 

(x?"),,, = I - 2a?A,. 

This relation gives in a very simple way the analytical expressions of the A,  : 

A, = (2a?)- ' ( ( r2- -x?)*) , .  (35) 

Thus, for axially symmetric shapes the reciprocai quantities ( ( r 2 - - x f ) * ) ,  are given by 
equations (28) and (29), noticing that the A,  functions for oblate shapes are deduced 
from the prolate angular moments and vice versa. Finally, the surface moments can be 
derived from the angular moments of the reciprocal ellipsoid by the relation 

(x;),, = ~ f A / 1 6 7 ~ + ( ( r ~ - ~ f ) * ) , , , / 8 .  

The algebraic simplicity of these equations is linkable to their order, which is less than or 
equal to the surface equation order. Moments of higher order can be deduced with a 
general recurrence formula derived from equation (30). The surface moments are 
closely related to the surface-energy tensors, which Rosenkilde (1967) has worked out 
in his studies of a rotating charged liquid drop. 

6.3. The volume moments 

The volume moments are considerably simpler to handle; by a homothetical trans- 
formation we can always reduce them to integrals over a spherical volume: 

b y ) ,  = 0,  n odd, 

(xy), = 3 a y [ ( n  + l ) (n  +3)], n even. 
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7. Shape-dependent Coulomb (or gravitational) functions 

7.1. The Coulomb potential 

Inside the ellipsoid, the Coulomb potential, induced by a homogeneous distribution of 
charges, is proportional to the function W ( r )  (see table 1): 

As shown by Kellog (1929), W ( r )  may be written as a quadratic function of the 
Cartesian coordinates; using the notation of Q 6, 

In droplet model formulae this function W(r)  is used to compute correction terms to the 
binding energy to take account either of the deviation of the proton distribution from its 
average value in the volume or of the redistribution of charges at the surface (Myers and 
Swiatecki 1974). 

The mean value of W(r)  in the ellipsoid is written 

= ($) W ( r )  dr. 

With the results of Q 6.3, w takes the simple form 

fi = (8 .n/5)(r2>, .  (37) 

w is proportional to twice the Coulomb energy of the uniformly charged ellipsoid. The 
expression (37) is coherent with the theorem found by Carlson (1961), stating that the 
shape-dependent Coulomb energy of an ellipsoid U(a1, a2, u 3 )  can be factorised: 

~ ( a l ,  a2, a31 = U U , ~ ,  1)(r2>w. 

The Carlson theorem has a wider range of application because it applies to any 
distribution of charges inside the ellipsoid when the surfaces of constant density are a 
family of similar concentric ellipsoids. 

Using equation (26), takes the simple form 

w = (87T/5)a2a3E;'F(9, k ) .  

@ ( r )  = 2.n (xf, ,(4-xf/af)  

The deviation of W ( r )  from its average value is (see table 1 and equations (36) and (37)) 
3 

i = l  

and with the results of Q 6, the following integral is deduced: 

To study the Coulomb effects at the surface of the ellipsoidal distribution, we introduce 
the relative mean value of W ( r )  
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where W,(r) is W(r)  on the surface. This quantity is expressed in terms of the surface 
moments of § 6 :  

fis = (9/32n-)A(r2) ,  -2  Ai(x?), .  
i 

The redistribution function B, (surface effects of second kind) is not calculated, since it 
involves surface moments of higher order and its contribution to the deformation 
energy has been found to be negligible (less than 1/10000 in realistic cases, cf Remaud 
( 1978a)). 

7.2. Shape-dependent functions 

Collecting the results of the preceding sections, the shape-dependent Coulomb 
functions can be written analytically: 

B, = (r%, 

The last Coulomb function (B,) is related to the former and to fi,: 
B, = 6B,B, - 5 Ws; 

then 

The surface function B, (see § 5 )  is connected with the B, Coulomb function by the 
relation 

which derives from equation (35). 
In figure 2,  the evolution of the various B functions is displayed for triaxial shapes, 

the eccentricity e l  being fixed. B,, Bk and B, are sensitive to the asymmetry while B, 
and B, are very little dependent on a triaxial degree of freedom. 

8. Conclusions 

All the shape-dependent functions (except fis) are simple combinations of the 
Ai(=(n:),)  and (x:), functions. With the use of the reciprocal ellipsoid properties, 
only one set is necessary. With the help of the symmetry properties of elliptic integrals 
the last set has been deduced from one basic analytical expression. Then, as long as the 
deformations can be considered as ellipsoidal deformations and as long as the 
leptodermous approach is valid, the three analytical expressions (x’),,, are sufficient to 
determine the macroscopic behaviour of a system such as a liquid drop or nucleus. 

If we refer to nuclear physics, studies of collective spectra (Remaud 1978b, Kumar 
1978) have shown that nuclear dynamics may depend strongly upon the macroscopic 
deformation energy. For example, at constant deformation magnitude an evolution in 
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Figure 2. Evolution of the shape-dependent functions for asymmetric shapes. The value of 
the eccentricity E~ is 0.95. In the oblate limit case k = 0, al  = a2 = 1.474, a3 = 0.460; for the 
prolate shape k = 1, a l  = 2.173 and a2 = a3 = 0.678. 

the symmetry of a nucleus has strong effects on the spectrum structure, although this 
transformation is often almost energy degenerated. A large class of nuclei has been 
labelled as soft, since their wavefunction of shape collective coordinates extends itself 
over a large domain in the deformation space; the spectroscopic properties of these 
nuclei are then dependent on the precise evaluation of the potential energy for an 
extended range of deformations and mainly of the triaxial degree of freedom. In that 
sense, our study is helpful since it provides analytical results for all deformations. 

Furthermore, the relationship that we have derived between the curvature function 
of an ellipsoid and the surface function of its reciprocal may provide clues for the study 
of the curvature effects on the macroscopical nucleus energy. 
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